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Pitch Damping of Helicopter Rotor with Nonuniform Inflow
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Akira Azuma* and Yoshiya Nakamura1^
University of Tokyo, Tokyo, Japan

Pitch or roll damping of helicopter rotor has been experimentally studied by using model rotors
in rocking motion. The rotors have articulated blades with spring constrained hinges and different
combinations of Lock number, flapping hinge offset, and hinge constrained stiffness. By consid-
ering nonuniform induced velocity distribution a theoretical estimation based on the momentum
and blade element theory has shown good coincidence with the experimental results. In contrast
with analyses based on the vortex theory the present theory is very simple and does not require
complex calculations so that the analytic evaluation and the quick estimation of the dynamic sta-
bility derivatives of rotor will be possible. The blade flapping behavior during sinusoidal rocking
motion has also been analytically and experimentally analyzed and the mechanism of generation of
direct damping and cross coupling moments have been clearly explained.
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Nomenclature

lift slope of the blade airfoil
blade tip-loss-factor
number of blade of the rotor
moment coefficient of the rotor at hub
thrust coefficient
blade chord, m
lift and drag coefficients of the blade
gravity acceleration, m/sec2

moment of inertia of a blade, kg m sec2

moment of inertia of rotor system in rocking motion
rotor incidence with respect to the forward velocity

or negative angle of attack of the tip path plane
imaginary = (-1)1/2

rotor dynamic parameters given by

= parameters expressing the nonuniformity of the
induced velocity given by Eq. (3)

= equivalent hinge stiffness = {(&#/122) + mR2x0(x -

= spring stiffness, kg/rad
= mass of the blade, kg sec2/m
= rolling angular velocity, rad/sec
= pitching angular velocity, rad/sec
= rotor radius, m
= radial position of the blade element, m
= flapping hinge offset, m
= Laplace transformation parameter, I/sec
= time, sec
= relative velocity of the blade element with respect

to air, m/sec
= tangential and normal components of U with re-

spect to the rotor plane, m/sec
= rotor forward speed, m/sec
= induced velocity, m/sec
= mean induced velocity, m/sec
= nondimensional radial position of the blade center

of gravity = $rdm/mR
= nondimensional flapping-hinge-offset = r&/R
= flapping angles, 0 = 0o + 0ic cos\^ + fas sin;/'
= preconing angle
= complex flapping angle, = —fas +jfac
= steady flapping derivative with respect to angular

velocity given by Eq. (14), sec
= Lock number = pac R4/I
= complex angular velocity of the rotor = -p + jq,

which is normal to the rotor shaft, rad/sec
= nonuniformity parameter given by Eq. (3)
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Superscripts

= complex attenuation factor given by Eq. (7)
= pitch angle of the helicopter
= blade pitch angles, 0 = 0o + Olc
= complex pitch angle = -01
= inflow ratio = (Vsini
= advance ratio = Vcosi/Rti
= airdensity, kg sec2/m4

= solidity = bc/irR
= inflow angle = tan"1 (-UP/UT)
= blade azimuth angle
= rotor rotational speed, rad/sec
= swing angular velocity of the rotor, rad/sec

= conjugate complex quanty of (
= time derivative

Subscripts
( )o = steady-state value of ( )

= quantity obtained in the uniform induced flow dis-
tribution

Introduction

THE most simple expressions of the rotor damping deriva-
tives for pitch or roll motion in hovering flight were given
by Gessow1 and Amer2 as dCM/d(q/tt) = (dCM/dfac) d(3lc/
d(q/to) = (16/7)dCM/d0ic for see-saw rotor system and by
Townsent3 as dCM/d(q/Q) = —aa/W for completely rigid
rotor system.} The above derivatives sometimes gave over-
estimated values for the actual rotor system, specifically for
hingeless rotor systems in hovering or low in and low CT
flight.

The theoretical inaccuracies must arise from inadequate
assumptions of the induced flow distribution and the treat-
ment of pertinent flapwise motion of the blade. Improve-
ments in the theoretical analyses are surely achievable by
introducing the precise induced flow distribution calculat-
ed by the Biot-Savart law for the wake vortex system4 and/
or by considering the elastically deformable blade having
the flapwise degree of freedom in the extent of higher order
modes.5 This, however, requires more computing time as
well as a laborious programing process.

Meanwhile, in the calculation of the nonuniform induced
velocity, the momentum theory must be still effective when
considering the fact that by applying the momentum theo-
ry to each of local pie shaped area on the rotor disk Shupe5

has obtained a reduction of the lift curve slope similar to
Miller's result6 based on the vortex theory.

For blade flapping motion in hingeless or rigid rotor sys-
tem, Young7 has proposed to replace the cantilevered blade
with an equivalent offset-hinged blade, which is a rigid

*In rigid rotor system the moment is limited to the direct hub
moment so that the indirect moment such as the moment derived
from the thrust vector times its position vector from the e.g. of the
helicopter is excluded here.
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Fig. 1 Test arrangement.

blade with spring restraint at the flapping hinge. As far as
the blade motion is concerned, this replacement may be
equivalent to including the first mode of the elastic defor-
mation of the hingeless blade. Thus the dynamic response
of the system can be treated in a relatively simplified man-
ner and the result is still effective for estimating the hub
moments and the related derivatives specifically for a blade
having a soft flexible part near the blade root.

Here, all blades used in the present tests were such offset
hinged blades, the stiffness of which were so high that the
flapwise deflection of the blade resulted only from bending
at the hinge restrained by a mechanical spring at the hinge.
Then, our attention can be concentrated on the aerody-
namic problems of rotor blade without regard to the elastic
behavior of the blade. The theoretical calculations based on
the simple momentum and blade element theory can then
easily be compared with the experimental results.

Experimental Apparatus
Most tests were performed in hovering flight condition.

The tests simulating the for ward-flight condition were con-
ducted in the open-jet-wind tunnel (3-m-diam) at the Insti-
tute of Space and Aeronautical Science, Univ. of Tokyo.
The test arrangement is shown in Fig. 1. The model rotor
was supported by a frame which allows the free rocking os-

cillation only in one degree of freedom about the hub with-
out introducing any transversal motion to the hub. The di-
mensions of the rotors and the operational rotor rpm are
listed in Table 1. The test Reynold's number was about 1 X
105 for all blades at blade tip.

The mechanical spring stiffness could be altered by re-
placing the spring at the flapping hinge with different one.
Three different kinds of springs were examined for the
present test.

The damping of the rocking motion, which resulted
mostly from the rotor aerodynamic damping (with a very
small contribution from the mechanical friction of the sys-
tem) was obtained by sensing the amplitude and the fre-
quency of the oscillation with a photo-electric system.

The hub forces and moments acting on the rotor also
were measured by using a balance system installed under
the hub which also could swing with the hub and drive
motor.

The flapping motion of the blade was sensed by strain
gages applied on a leaf spring provided at the flapping
hinge, the stiffness of which was negligibly small.

The collective and cyclic pitches were sensed by potenti-
ometers installed on the swash plate together with servo-
motors which can remotely provide a specified pitch angle
of the blade.

Table 1 Model geometry

Items

Section
Twist
Materials
Radius, m
Chord, m
Solidity, cr
Flapping hinge offset, xp
c.g, of the blade, x
Moment of inertia of the blade, J(kgm sec2)
Lock number, 7
Rotor dynamic A^

K2
parameters, K^
Spring stiffness, ^(kg/rad)
Equivalent hinge stiffness, Kp
Rotor, rpm

A

NACA 0012
0

Aluminum 52S
0.55
0.033
0.0573
0.0818
0.241
0.00118
1.84
0.181
0.245
0.361
0—7.0

0.17—2.53
480—600

Model rotors

B

Clark Y t/c = 0.14
0

Wood
0.90
0.055
0.0584
0.050
0.156
0.00363
7.10
0.731
0.996
1.500
0—7.0

0.0534—6.25
200—600

C

Clark Y t/c = 0.14
0

Wood
0.75
0.050
0.0636
0.060
0.144
0.00203
5.62
0.571
0.775
1.16
0—7.0

0.0711-^7.95
200—600
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Blade Flapping in Nonuniform Induced Flow
Distribution

It is assumed here that the induced velocity has the fol-
lowing inclined funnel-shape distribution:

v(x,ip) = 4- Kic 4- K is

(1)
where D is a mean uniform induced velocity given by u =
RttCT/2(n2 + X2)x/2, and KQ, KIC, and KIS are nonuniformity
correction f actors. § The factors can be determined by con-
sidering the harmonic balance of the thrust of momentum
theory with that of blade element theory.5'8'9 The result
can be given from Appendix A as follows:

= Tia[eic{i 4- (1/4) ^(/V^)}

(2)

4- /slc{i - (i/Dtftes/Ki)} 4-
where 7ja is a "nonuniformity parameter" given by

for hovering and vertical flight
(3)

(lG/av)(v/Rn) sim}
for forward flight

The parameter rja is strongly affected by the thrust coeffi-
cient in hovering and vertical flights but little in forward
flight for small i, while for large i the rja decreases very rap-
idly as the forward speed increases.

The blade flapping equation of motion can be obtained
from the moment balance about the flapping hinge provid-
ed with a linear mechanical constraint as follows10:

kB(ft - J30) = fdm[{r& + (r - rfl) cos/3}^2 sin/3 + g* cos/3

4- (r - re){/? - (q + 2/>O) cos^ - (p - 2qti) sin^}]

+ J(l/2)pcU2(cl cos0 - cd sin&dr (4)

where the left-hand side of the above equation results from
the spring constraint and where the first, second, third, and
fourth terms in the right-hand side are, respectively, de-
rived from the centrifugal, gravitational, inertia, and aero-
dynamic forces. Assuming 0 and xp = r$/R to be small sub-
stitute Eqs. (A3) and (A4) into Eq. (4). Then three coupled
second-order equations of motion for /30, ft\c and 0is will be
obtained from the coefficients of the first three terms in
Fourier series of azimuthal angle \I/, i.e., the coefficients of
zero, first cosine, and sine components, respectively.

When the induced velocity is constant and uniform, a
given "complex cyclic-pitch-input," 8 = —Bis + j6\c, and a
specified "complex body-angular-velocity," e = — p + jq,
yield a complex flapping angle or complex tilt angle of the
rotor-tip-path plane, ft = -ft^s 4- jft^c, of which transfer
function is given as follows10:

4- 9(s)} 4- (ft i ~ 2j)}(€

4- (Kl - + (K, - (5)

where subscript 1 for ft has been supplemented to show
that the result was obtained in the assumption of uniform
induced flow distribution, and where ft and 6 are complex
conjugate quantities of ft and 6, respectively.

§The term of — (2/3)Ko is derived by taking the D equal to the
mean velocity over the rotor disk so that a little change in thrust is
eventually resulted.

The transient flapping motion is, in general, damped out
so rapidly within a few blade rotations that only the steady
terminal state of the flapping angle is of our interest in the
study of the stability and control characteristics.

When the induced velocity is not uniform, the steady
terminal flapping angles for step inputs of the cyclic pitch 0
and of the angular velocity, «/Q, can be given by

where 77^0 is a "complex attenuation factor" of the flapping
angle resulted from the nonuniformity of the induced flow
due to the cyclic pitch change, and rjpf-€ is that due to the
body motion; fa (0) and fa(t/to) are the steady terminal
states of the complex flapping angle in uniformly distribut-
ed induced flow. ' They are, from Appendix B, respectively,
given by

exp{-j tan-^-tfi/tffl)}] (7a)

4)1/2} exp{-j tan-1(-2/^1)}]/[l
} exp{-j tan-^-Ki/K,)}} (7b)

)

(8a)

X1)
(8b)

For fully articulated rotors without offset flapping
hinges (K$ = 0), the attenuation factors become

exp{j

= 1.0
(9)

for any flight condition. For perfectly rigid rotors (K$ = <»),
on the other hand, the attenuation factors take the fol-
lowing forms

exp{-j
(10)

The above reduction due to the cyclic pitch change was
first proposed by Sissing11 and then extended by Shupe5 to
a simplified correction for the Lock number as follows:

y* = (1 -7]a)y

Figure 2 shows some examples of 77^0 and rj^-f with change
of K/s for various CT or 00 in hovering flight and for V/Rto in
forward flight in which they are almost independent with
CT. As the rigidity or Kp increases from zero to infinity,
their absolute values 1 1;̂  and 1 77/3^ decrease monotonically
and their phases Z%0 and £i\fa decrease once but return to
zero after passing a maximum value determined by a prop-
er combination of K\ and Kp. It can be seen that the reduc-
tion of absolute values and phases are predominant for low
CT in hovering flight or low V/Rto in forward flight.

' After the present paper had been presented, a referee advised
the authors that D. A. Peters published a paper titled "Hingeless
Rotor Frequency Response With Unsteady Inflow; Proceedings of
the American Helicopter Society and NASA/AMES Research Cen-
ter Specialists Meeting on Rotorcraft Dynamics, Moffet Field,
Calif., Feb. 13-15, 1974, in which Peters discussed the nonuniform,
unsteady induced flow effects on the hingeless rotor frequency re-
sponse. However, he laid stress on the unsteadiness of the inflow
perturbation rather than the nonuniformity. In the present paper
the unsteady term in momentum contribution on the lift had been
neglected because, unlike the blade flutter, the frequency of actual
rotor shaft motion or helicopter body motion was considered to be
sufficiently small.
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a) In hovering flight

0-7 0-8 0-9 1.0 I.I 1.2 1.3 1.4 ™Fig. 2 Examples of attenuation factors
for blade Happing (K= 0.18).

9 v/Rri=o-i . <
0>

b) In forward flight

Figure 3 shows experimental verification on the effect of
K/3 in the flapping response due to the cyclic pitch input in
hovering flight. The test has been conducted for various Kp
depending on different combinations of Lock number and
the stiffness of spring provided at the flapping hinge. It will
be observed that the above described simple theory based
on the nonuniform induced flow shows good coincidence
with the experimental results except for the phase at low
K/3. The phase discrepancies in low K/3 must be caused from
not only by the imperfection of the preceding simple theory
but also from a poor estimation of K/3 due to inadequate ar-
rangement of the mechanical spring in the model rotor.

Rotor Response for Sinusoidal Rocking Motion

Suppose that the body angular velocity e is given by a
forced sinusoidal motion such as

0

k
Is

= (e0 /f t) exp(jutf)

50

(11)

0-1 0-2 0-5 1-0 0-1 0-2 0-5 1-0
Equivalent hinge st i f fness, K0 Equivalent hinge st i f fness, K£

a) Gain b) Phase

Theory

_ _ _ Uniform inflow , or /3(

— -—Nonuniform inflow, or T l 80 = 6°

,00=2°

Fig. 3 Flapping response by pitch input in hovering flight
(0i8 =-4°, 7 = 1.84.

The frequency of the motion may be considered so small
that the unsteady aerodynamic effects can be neglected.
Hence the response of the tip path place can, from Appen-
dix B, be given by

(12)

where

expH ' - 2)/Ki}]}/ {l

(13)
, + 2(o>A2) - (u>/ft)2}2

exp[j tan-'ftco/fl - 2)/K,}

-f 2co/ft - (w/n)2)}] (14)

exp[-/ tan-H

ftM = {[K?

Figure 4 shows the preceding attenuation factor for various
a; and #o- It is interesting to find that the factor changes
with co/fi and the rate of change is more predominant for
lower 60 as well as lower stiffness of the rotor blade. For
slow body motion or o>/Q « 1 and usual operational range
of CT or ija « 1, the absolute value of ̂ (co) may not be ap-
proximated by that of rj^e but the phase of ̂ (to) is nearly
equal to that of rjpj in low co.

When only the forced sinusoidal pitching oscillation is
under consideration

sin(co/)
or

the sinusoidal flapping motion becomes

/3(eA2) -

(15)

-1*.*(-wW-w)e-Jut} (16)
Equation (16) gives an elliptic motion in the ft plane,

that is to say, the vector ft in the complex plane, which is
the projection of a normal vector of the rotor tip path
plane, moves along the elliptic orbit in the same period as
that of rocking motion, as shown in Fig. 5.** If the absolute
value of either one of vector &(o>) or &(— a;) in Eq. (16) is

**Recently, very similar diagram of ,
nusoidal cyclic pitch input in Ref. 12.

was obtained for the si-
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1-3

-0 -1 -

- 0-2L

Fig. 4 Attenuation factor i7/3, e(w) for sinusoidal rocking mo-
tion in hovering flight (K0 = Ki = 0.18).

very small the orbit will be nearly circle, whereas if its
ratio, \fti((*})\/\ftt(—o>)|, approaches to one the eccentricity of
the ellipse becomes large. The above ratio depends on the
combination of the KI and Kp.

The rotation of the vector b(e/ft) is thus governed by the
larger one of either /? (<*>) or 0 (-00). It will
be observed from Fig. 5 that as the Kp increases the major
axis of the ellipse tends to tilt from the imaginary axis to
the real axis of the complex /3-plane and simultaneously to
shrink to zero.

In Fig. 5 the theoretically obtained vectors 0 due to
pitching oscillation are plotted for the cases of uniform in-
flow distribution and nonuniform inflow distribution cor-

rected by the attenuation factors 770,0, i?0,i,(0) and i?0,«(<*>)
though there is no any positive propriety to adopt i\$$ for
the nonuniform correction. The sizes of the ellipse are dif-
ferent for respective factor but the phase are almost un-
changed in the usual operational range of the rotor. Experi-
mental results are also shown in Fig. 5 in normalized form
based on the amplitude of the rocking motion in each cycle.
They are very close to the ellipse corrected for nonuniform
induced flow distribution by 77^0 rather than i/0,e(co) or
170,«(0). The most important difference among these factors
is that the absolute value of rjpj is less than 1 while those of
remainings are larger than 1 in usual operational range of
oj/Q. The experimental test shows that the damping is still
overestimated by the present simple theory though the
three-dimensional effect is counted by taking B = 0.97. Ta-
kazawa has shown that the variation of relative positions
between the rotor blades and their shed vortices in the
wake due to the rotor motion must be taken into acount for
the estimation of the damping.4 If we wish to use the pres-
ent simple momentum theory rather than the more com-
plex vortex theory, it may be said that the pitch damping
should be corrected by the factor i\^ rather than 77^^(0;).

Radial vectors in each ellipse designated by jftmax|e| in Fig.
5 show azimuthal position of ft at which the rocking veloci-
ty is maximum. The meaning of these radial vectors on the
damping in rocking motion will be described in later.

Damping Moment Derivative

The pitch damping derivative of the hub moment will be
given by

dCu

(17)

in which the first term results from the direct shear force
acting on the flapping hinge and the second and third
terms are obtained from the indirect terms due to the blade
flapping motion following the body motion.1^ The blade el-
ement theory provides their expressions as follows:

ttSince the rocking motion has been considered sinusoidal here,
any damping which might be created from the driving motor
through the resistive work opposing to the Coriolis force can be ne-
glected as small quantities.

0-4 r

Fig. 5 Flapping for sinusoi-
dal hub motion in hovering

flight (Ki = 0.16, 60 = 2°, 7 =
1.84).

0-6r

a) K£=0-08

Anoxl*!

Nonuniform inflow , or (3(€/&) in e q . ( I G )

----- Uniform inf low , or
-02L
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3lc = -(!/2)(bm/pSR){xBx

where /3ic,max<7 and /3is,max(7 are /?ic and /3^s at the maxi-
mum pitching velocity and are, respectively, given by

(19)

-r^!2 -2KB)/(K? + K? 4-

where 77^ and 77^ are, respectively, the imaginary and nega-
tive real parts of rj^f such as q&cCw) = —r]ps + 777^.

The first term in Eq. (17) is directly proportional to
hinge offset, xp, and the solidity a. The second term has a
peak at some Kp. The third term is a crossed term and is
generally small. Figure 6a shows examples of the pitch
damping derivative calculated for various xp and Kp combi-
nations. Figure 6b shows experimental results obtained
from the rocking motion of the rotor for various Kp. The
pitch damping derivatives in the sinusoidal rocking motion
have been obtained from dCM /d(q/Q) = lnjH(£2)/0(£i)!/s-
<jo/irpSR3tt, where ti and ti are time spanned one cycle and
Is is the moment of inertia of the system. In the present
rotor system this derivative is, from the blade element
theory, approximated by

0-05 0-1 0-2 0 - 5 1 2
Equivalent hinge stiffness ,

10

o 0o = -2°

Experiment ( A 9o = 0°

I a 60 = 2°

——-— Nonuniform inf low, or

, or

0-04

0.03

Ls 0.02

0-0 I

0.05 O.I 0-2 0-5 I 2
Equivalent hinge stiffness ,

b) Test results (90=2°, K^=0.937, Y=T.10)

Fig. 6 Examples of pitch damping derivative in hovering
flight a) theoretical results, b) test results (00 = 2°, K0 =

0.937,7 = 7.10).

(21)

fts

It will be observed that for small Kp the test results are
concentrated near the theoretical value corrected by ry^O),
while for large Kp near the peak value of the damping they
are rather distributed around the value corrected by ypj.

It will be appreciated from Eq. (20) that the maximum
damping is affected by a combination of /?iCjinax9 and
/3is,max(? or the radial vectors, /3maXo shown in Fig. 5. In
usual rotor configuration the second direct term is predom-
inant over other terms so that the larger /3ic>max q gives bet-
ter damping.

In forward flight the ju affects to improve the pitch
damping and to reduce the roll damping. This is, as shown
in Fig. 7, due to the flapping or tilt response of the rotor tip
path plane. Figure 8 shows examples of pitch damping ob-
tained from the wind tunnel tests for A blades in Table 1.
It is also noticed there that the tests show good coincidence
with the theory based on the nonuniform inflow distribu-
tion.

Cross coupling derivatives, dCMy/d(p/Q.) and
d(q/Q), can be given by similar form as Eq. (17)

(22)

where newly introduced coefficients are given by
= (bm/pSR)x&x

3-0

2-0

*- 1.0

..-,
———

X

\

0

\
~~^~"*<

"-—— ̂

^

*• — ̂ ^

vionuniform inflow, or TJJU i(O)

" - o r %,e
Uniform inflow

s

P v O

'-—

2 0
Adv

3 0
once ra

4 O-
tio , /JL

— d(p/fl)

- i.o
Fig. 7 Rotor tilt angles due to rocking motion (Kg = 0.22,

K0 = 0.937, T = 9.8).
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Experiment o a

——— — Nonuniform inflow, or ^^ £(0)

— -— ,, t or ijjtafl

——— — . Uniform inflow
0.2

O.I

= 0.22

0-1 0-2 0-3 0-4
Advance ratio , p.

0-5

Fig. 8 Pitch damping in forward flight (00 = 4°, Kp = 0.18, 7
= 1.84).

K2 -

(23)

K (24)

c + K2 -
-77^(2 4- K&)/(K? + KB

2

Figures 9 and 10 show the above cross coupling deriva-
tives for the rotor in hovering and forward flight, respec-
tively. As the Kp increases, the cross coupling derivatives
become appreciable so that the cross coupling moments are
induced. As the M increases, the coupling effects are slightly
reduced.

Conclusion

Experimental tests for pitch or roll damping of helicop-
ter rotor have been conducted in wind tunnel by using
model rotors with different combination of Lock number,
flapping hinge offset, and its hinge constrained stiffness. A
theoretical method of estimation based on the simple mo-
mentum theory has been developed by taking account of
the nonuniformity of the induced flow distribution which is
predominant for low CT and low p flight in rigid rotor sys-
tem. Three attenuation factors for the flapping motion

Fig. 10 Cross coupling terms in forward flight,
= #/3=0.937,7=9.8).

0-010

0.008

———Nonuniform inflow, or ijju *(0)

-----Uniform inflow

0 O.I 0-2 0-3 0-4 0-5
Advance ratio , p>

Fig. 9 Cross coupling terms in hovering flight (00 = 2°, K\ =
Kp = 0.937, 7 = 9.8).

have been derived from the theory. The test result showed
good coincidence with these factors in phase but not always
so in amplitude. It was found that the attenuation factor
for the cyclic pitch response, rjpj, gave the best correction
over the others for the estimation of the rotor damping.

The blade flapping behavior during rocking motion has
been analytically estimated and represented by an elliptic
orbit in the £ plane. The eccentricity of ellipse, the length
of and the tilt angle of the major axis are strongly depen-
dent on the equivalent stiffness of the blade, Kp. The direct
damping term and the coupled moment are related to the
radial vector at the maximum rocking angular velocity,
Anax e The experimental test results which have been con-
ducted for a few examples have shown good coincidence
with the above simple theory.

Appendix A: Nonuniformity Parameter

Let us consider a reaction force acting on a pie shaped
area shown in Fig. Ha, which is generated by a rotor blade

a) Pie shaped area

reaction force due to

£
dT,
drdr

2dm j..
drdrv

d\l//\ I

1 mean

7
momentum thrusts

-*- ?ir/O — Time

b) Force balance between b elementary thrusts
and mean momentum thrust

Fig. 11 Pulsating forces and momentum thrust over pie
shaped area.
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rotating on the rotor disk. In a very idealized case where
the blade remains on the rotor disk, the reaction force is
created only when a blade element passes through just on
the pie shaped area and the contribution due to the re-
maining part of the blade can be discarded. Thus, within
the time of one revolution of the rotor, 27r/fi, the pie shaped
area will subject to a series of b pulsating forces each height
and width of which are respectively given by an elementary
thrust (dT/dr)dr and time d^/12 as shown in Fig. lib. It
may be considered that these pulsating forces can be bal-
anced by a mean momentum thrust over that area as fol-
lows5'9:

b(dT/dr}dr(d$/$l) = 2(dm/dr)vdr(2*n/Sl)dip

where (dmfdr)dr is the mass flow through the pie shaped
area induced by the reaction forces. Thus the above rela-
tion yields

lim s/3(s)
s - O

(b/2ir)(dT/dr)drdil) = 2pr(V +
for hovering and vertical flights

(Al)
= 2pr[(V cost)2 + (V sim +

v)2]i/2vdrdil>
for forward flight

It has been assumed here that in forward flight the parallel
flow on the pie shaped element also participated in the
generation of the momentum thrust.

From the blade element theory, the elementary thrust
can be given by

where
dT/dr = (l/2)pac(eUT

2 + UTUP)

UT =

tarn + (v
Kic cosijj + E

\- /3ls sinz/0

- (2/3 )#0 + x
sin^) + jii(/30 + /3lc

+ x{-(pic + p/ti)

+ ftc
+ 9ic

+ /3ls

+ 6is

(A2)

(A3)

(A4)

The blade flapping motion and the rotational or rocking
motion of the rotor have been taken into account in the
above expressions because they are important factors to
decide the nonuniform distribution of the induced velocity.
Combining Eqs. (A1-A3) and assuming that the correction
factors are represented at x = 3B/4, Eqs. (2) and (3) will
approximately be derived. The factor K0 will be left out of
consideration in the present analysis.

Appendix B: Attenuation Factor

When the induced velocity is not uniform, the flapping
equation of motion (5) can be modified by

- [(1 -

9(s)

- 2j)(s/Sl) + {#3 - (1 - (Bl)

Then, step inputs of 6 and € result the following steady ter-
minal state:

- [(1 -r?

h(6) + ri^hd/a) (B2)

are, respectively, given bywhere 17̂ , 17/3 ,̂ Pi(6) and p
Eqs. (7a-8b).

For sinusoidal input of body angular motion such as
€/0 = (€0/«) exp(j^)

the terminal flapping motion becomes

0(€/n) - [{i -77^/CK:!2

x exp[-j tan-H((co/0)

(B3)

exp[-j
(B4)

exp[ j

where 17^,^(0?) and ft(co) are given Eqs. (13) and (14), respec-
tively.
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